If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-15+4x^2-2x^2=180
We move all terms to the left:
2x^2-15+4x^2-2x^2-(180)=0
We add all the numbers together, and all the variables
4x^2-195=0
a = 4; b = 0; c = -195;
Δ = b2-4ac
Δ = 02-4·4·(-195)
Δ = 3120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3120}=\sqrt{16*195}=\sqrt{16}*\sqrt{195}=4\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{195}}{2*4}=\frac{0-4\sqrt{195}}{8} =-\frac{4\sqrt{195}}{8} =-\frac{\sqrt{195}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{195}}{2*4}=\frac{0+4\sqrt{195}}{8} =\frac{4\sqrt{195}}{8} =\frac{\sqrt{195}}{2} $
| 39=9+5v39 | | -9c−16−20c=-20c+20 | | 2x-7+2x-7=x+10 | | 8+16=7x-x-4x | | 5x+12/29=4 | | -11.86+5.6s=7.2s+14.7 | | 5(v+5)-8v=28 | | 2(3x+8)=15x+12-9x+4 | | -7(y-5)=7y+7 | | 8(2x+6)=16x-7 | | -2u+44=-4(u-9) | | -4K+20=-15k-20+9k | | -7n=-6n+7 | | 4=2+p/5 | | 6x+14x-1=5(4x+6) | | -5=8(v+2)-5v | | -2(x+1)+9x=-16 | | 12=12(v-8/2 | | 6+4v=3v | | 3w+2(w-4)=-33 | | 5x+4+5x+4=38 | | 16=9x-7x | | 10s-2-2=-2+8s | | 60-4y=48 | | 1/3+1/4+300000=x | | 3(4x+2)=15x+4-3x+2 | | -47=41−d | | -h+10=-10+4h | | 3x+12x-6=3(5x+9) | | -3(k+72)=78 | | 15-16=(x-4) | | -9+9s=10s |